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Calibrated nonparametric confidence sets
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The construction of confidence sets when multivariate normality holds and in the gen-
eral case where the usual spherical or elliptical structures may not occur is investigated.
Calibration is used to correct the coverage probability of the nonparametric sets, and an
example involving parameters from a chemical kinetics model in a biological system is used
to demonstrate the techniques. Monte Carlo simulations validate the approach.

1. Introduction

In many cases it is necessary to determine a confidence set without assuming
a particular distribution for the data. When certain distributional assumptions can
be justified, confidence sets can often be easily constructed and have regular forms.
For example in the multivariate normal case, one observes the familiar spherical or
elliptical structures. There are numerous applications, however, that require confidence
set construction when the underlying distribution is not well characterized, and only
small samples are available.

An example of this situation is the determination of joint bioequivalence for
pharmaceutical formulations. For this problem, one usually constructs confidence in-
tervals for the difference or ratio of test and reference formulation means for various
parameters estimated from the concentration-time profiles for each drug formulation.
Though the parameters such as area under the curve (AUC) and maximum concen-
tration (Cmax) are obviously correlated, confidence intervals are typically calculated
for each parameter separately and bioequivalence concluded if each interval is com-
pletely contained within some specified regulatory boundaries. The literature is vast
on this topic (see [8,14,15,17], and the references cited in those articles for a good
overview).

In this paper, joint confidence sets assuming multivariate normality using a rela-
tively new approach of Brown, Casella and Hwang [4] will be compared to bootstrap-
calibrated corrected confidence sets not requiring distributional assumptions.

These approaches will be compared using a real bioequivalence example, and
the corrected confidence set method will be evaluated with regard to the coverage
correction required for various simulated distributions and sample sizes.
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2. Confidence sets and the limaçon of Pascal

Brown, Casella and Hwang [4] demonstrate that the limaçon of Pascal, a gener-
alization of a cardioid curve, provides an optimal confidence set in the normal case.
They show that this set has actual coverage probability equal to the nominal, and
smaller volume than the usual elliptical region in the bivariate situation shown. For
C(x), a set estimate of a parameter θ, the expected volume, at θ = 0, of the uniformly
most accurate set C∗(x) was shown to be
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since X ∼ N (0, I), X ′θ/|θ| ∼ N (0, 1) for any nonzero θ. Applying a polar transfor-
mation gives
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Since the volume of a p-sphere of radius 1 is πp/2/Γ(p/2 + 1), the pth root of
the integral in (2) gives the radius of the set, where a = Φ−1(1−α) produces a 1−α
confidence set. In the normal case, the optimal confidence set is then shown to be

C∗(x) =
{
θ: |θ| 6 a+ |x| cos β

}
, (3)

where cos β = x′θ/|x||θ| and β is the angle between x and θ. The boundary of C∗(x)
is the main lobe of the limaçon of Pascal. When normality does not hold, the limaçon
is not expected to appear; indeed, even the spherical or elliptical structures or their
hybrids do not appear unless star unimodality is present [5].

3. Calibrated confidence sets

When distributional assumptions are untenable, the bootstrap method can be
considered for obtaining confidence intervals. It is well-known, however, that the
percentile bootstrap method can undercover and that the various bias-corrected, the
percentile-t, and the Edgeworth-corrected intervals might not completely correct the
coverage problem, or if they do, can give overly long intervals [6,9]. Bootstrap iteration
[2] seems to provide a satisfactory solution to the problem of constructing nonpara-
metric confidence intervals with high coverage accuracy and with stable endpoints and
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lengths [7]. We will investigate whether this solution holds for joint confidence sets,
where one would expect that the undercoverage problem is magnified.

Bootstrap iteration with two levels of bootstrapping for confidence intervals can
be described as follows [2,11]. From the estimated distribution F̂n draw a bootstrap
sample of size n, called x∗n. Let F̂ ∗n indicate the recomputed estimate of F from
x∗n. Now, let x∗∗n be a further bootstrap sample of size n drawn from the estimated
distribution F̂ ∗n . The components of x∗∗n are conditionally independent given xn and
x∗n. Then θ̂(xn) is an estimate of θ based on xn and θ̂(x∗n) and θ̂(x∗∗n ) are the bootstrap
estimates of θ denoted θ̂∗n and θ̂∗∗n .

Correlations among the parameters (and among the repeated measures responses,
if applicable) are preserved by vector resampling.

From the first level of bootstrapping, suppose one has obtained B1 resamples
each of size n. Suppressing the n subscript we can obtain from the ordered values
θ̂∗B1,1 6 · · · 6 θ̂∗B1,B1

, a nominal γ-level percentile-method interval for θ:(
θ̂∗B1,[(1−γ)B1/2]+1, θ̂∗B1,[(1+γ)B1/2]+1

)
, (4)

where [. ] indicates the integer function.
For each of the B1 resamples, resample B2 times and construct percentile-method

intervals for θ̂ at several nominal levels γ1, γ2, . . . , γn close to the desired level α, but
with enough of a range to correct for possibly substantial miscoverage. The estimate of
the coverage probability, η̂(γi) for i = 1, 2, . . . ,n is the proportion of the B1 intervals
of nominal level γi which cover θ̂.

We now calibrate the confidence interval by finding the nominal coverage level,
βα, such that the true coverage of the interval is exactly α. Letting βα solve η(βα) = α
will provide the needed calibration adjustment. For the bootstrap interval, we obtain an
approximate value of β̂α such that η̂(β̂α) = α. Thus, a percentile-method interval with
nominal level β̂α approximates the coverage corrected interval. For multiparameter
confidence sets, the natural extension would be to include in the confidence set those
cases which are jointly contained in the coverage-corrected (4) for each parameter, that
is, for θ̂∗ = (θ̂∗1 , θ̂∗2, . . . , θ̂∗p), we require

p⋂
j=1

Ij =
{
θ̂∗ : (θ̂∗1 ∈ I1) and (θ̂∗2 ∈ I2) and . . . and (θ̂∗p ∈ Ip)

}
,

where I1, I2, . . . , Ip are each of the form in the coverage-corrected (4). This general
technique, of approaching a complex problem by combining information from less
complex problems each having some optimum properties, is due to S.N. Roy [12,
13, p. 12]. The next step is to calibrate the actual set coverage probabilities to the
corresponding nominal interval probabilities. The more conventional approach would
be to retain the ellipsoidal structure and use bootstrapping to empirically obtain F -type
critical points, as Adkins and Carter Hill [1] do in a regression setting.

Bootstrap iteration, even if restricted to two levels, can be quite computationally
intensive, since B1B2 is recommended to be of the order of 106 [3]. There has been
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recent research aimed at reducing the computational burden of the iteration procedure,
as described in Lee and Young [10].

4. A bioequivalence example

To demonstrate the methods, we will use the data from Sheen et al. [16]. They
compare the bioavailability of α-pentyl-3-(2-quinolinylmethoxy)benzenemethanol, a 5-
lipoxygenase inhibitor, for tablet and capsule formulations, each with or without food.
This is a basic compound with a pKa value of 3.7 and a solubility of∼ 0.002 mg/mL in
water at 37◦C at pH of about 6. Eight healthy male volunteers received the treatments
according to a randomized four-way crossover design.

For the tablet formulation, we can evaluate the bioequivalence of the compound
taken with (subscript 1, below) or without (subscript 2) food. In figure 1, a visual
assessment of bivariate normality for AUC and Cmax is displayed using a plot of
squared Mahalanobis distances vs. χ2(p) quantiles, where p = 2 variables in this
case. There is some suggestion of departure from bivariate normality (nonlinearity

Figure 1. Bivariate normality plot for AUC and Cmax. A straight line, at 45◦, through the origin (the
reference line shown) would indicate bivariate normality.
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Figure 2. The boundary of the two-dimensional 90% limaçon for the tablet. The points within the
limaçon form the coverage-corrected bootstrap confidence set.

of the plot). Each parameter appears normal by the Shapiro–Wilk test (however, the
power of the test is low for these small samples), but the limaçon requires multivariate
normality.

For the tablet, one can construct a two-dimensional limaçon with AUC difference
θ1 = µ1−µ2 and Cmax difference θ2 = τ1−τ2. If we assume that the data are bivariate
normal with known variance: θ̂ = (θ̂1, θ̂2), where θ̂ ∼ N (θ, Σ), the 1 − α limaçon
confidence set is then {

θ: (θ′Σ−1θ)1/2 6 zα +
θ̂′Σ−1θ

(θ′Σ−1θ)1/2

}
(5)

where zα is the upper α critical value from a univariate standard normal distribution.
This set gives a fairly elliptical limaçon as is seen in figure 2 (for α = 0.10) which
displays the boundary of the limaçon, and within it, the calibrated 90% bootstrap con-
fidence set using (4) represented by the points shown, which looks roughly elliptical.
Since this example had a repeated-measures structure, the subject response vectors
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were resampled for the bootstrap method. Note that, for this data, the limaçon is
completely contained within the usual elliptical confidence region (see [4], figure 5b).
Since one would conclude bioequivalence if the confidence set is contained completely
within the regulatory boundaries, which would be rectangular or hyperrectangular, the
limaçon indicates bioequivalence for smaller differences than the usual confidence el-
lipse, and the coverage-corrected bootstrap set provides a still sharper inference. The
bootstrap can also be used if confidence sets on the ratio of means, or some function
of the medians are needed.

5. Simulation results

In previous simulation studies, the iterated bootstrap performed well [6,9] for
constructing nonparametric confidence intervals. In this study, we will determine the
magnitude of the calibration correction necessary to produce accurate confidence sets
when two parameters are considered simultaneously.

Since the example in section 4 had a repeated-measures structure, the simulations
were based on correlated normal (ρ = 0.5), correlated lognormal (ρ = 0.378), and cor-
related folded normal (ρ = 0.5) variates. Results are for 1,000 Monte Carlo samples
of sizes n = 8 and n = 24 for each distribution. Table 1 displays the nominal levels
needed to obtain joint bootstrap confidence sets with actual coverage probability 0.9.
It is encouraging that for the example in section 4, the bootstrap iteration calibration
indicated that a nominal level of 0.976 was required to correct the bootstrap cover-
age, agreeing closely with the simulation results in table 1. The corrections for each
component, separately, were 0.944 and 0.960 for the section 4 example. From table 1,
as expected, the magnitude of the correction needed increases as the sample size de-
creases. If the sample size is quite small, the possible number of distinct resamples
becomes limited, rendering iteration less effective.

Table 1
Nominal coverage for bootstrap intervals needed to obtain a joint bootstrap
confidence set with actual coverage probability 0.90. Simulations based on

1,000 Monte Carlo samples in each case.

Distribution Sample size Nominal coverage

Normal 24 ∗ 0.970
8 ∗∗ 0.986

Folded normal 24 ∗ 0.965
8 ∗∗ 0.992

Lognormal 24 ∗ 0.973
8 ∗∗ 0.995

∗ B = 1,000 bootstrap resamples per Monte Carlo sample.
∗∗ B = 4,000 bootstrap resamples per Monte Carlo sample.
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6. Discussion

Constructing good nonparametric confidence intervals and sets is a complex task.
The results given in this paper indicate that one can obtain satisfactory nonparamet-
ric confidence sets, though admittedly, at a high computational cost, and requiring
substantial correction to the ordinary percentile sets. With the advances seen in com-
puting power and storage, and the recently developed approximating techniques, the
cost issue should become less pronounced. An advantage of the bootstrap is that it can
be applied to confidence set estimation for the ratio of means or medians, the mean
or median of ratios, and other functionals. If multivariate normality is a reasonable
assumption, then the limaçon of Pascal can provide optimal confidence sets in certain
circumstances.
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